

Ferramenta de ensaio de resposta em frequência do RT

Henrique Augusto Menarin - <u>henrique.menarin@reivax.com</u>, P&D Controle.

Introdução

O ensaio de resposta em frequência pode ser realizado num sistema de controle com várias finalidades, como identificação do processo, avaliação de robustez da malha fechada e auxílio na sintonia do estabilizador de sistemas de potência.

Este ensaio é convencionalmente realizado utilizando instrumentação externa, utilizada para gerar um sinal de excitação senoidal e adquirir variáveis de interesse. O sinal senoidal é inserido por uma entrada analógica no sistema de controle, somado a um ponto de interesse do processo, o que gera uma resposta senoidal no sistema. O sinal para o qual se deseja calcular a resposta em frequência com relação ao sinal senoidal de excitação é adquirido no equipamento de análise de sinais. Este equipamento varia a frequência do sinal de excitação na faixa de frequências desejada, e calcula a amplificação e a diferença de fase entre o sinal de entrada e o sinal de saída.

Para simplificar a execução dos ensaios sem ser necessário ter o equipamento à disposição e economizar o tempo de instalação, a REIVAX disponibiliza uma ferramenta de resposta em frequência na própria IHM do regulador.

Ferramenta de ensaio resposta em frequência

A ferramenta de ensaio de resposta em frequência pode ser acessada a partir da janela de ajuste da malha de controle de tensão e corrente (Figura 1).

Figura 1 - Acesso à ferramenta de resposta em frequência pela janela da malha do RT

Figura 2 - Janela do ensaio de resposta em frequência do RT

Método do ensaio

- 1. Ao clicar no botão INICIAR, gera-se um sinal senoidal que é somado ao ponto de soma selecionado. O sinal senoidal possui a amplitude configurada e frequência igual ao mínimo informado na faixa de frequências;
- Após passado o tempo de estabilização, é iniciado o cálculo da resposta em frequência. O cálculo é realizado ao longo de uma janela que dura, no mínimo, o valor configurado em Tempo mín em regime, ou o tempo necessário para que se complete o número de ciclos do sinal de excitação configurado em Mín ciclos em regime;
- Durante o tempo em regime, calcula-se a resposta em frequência do sinal de saída com relação ao sinal de entrada. O ganho em dB é a razão entre a amplitude da saída com relação à entrada. A fase em graus é o quanto o sinal de saída está atrasado ou adiantado em relação ao sinal de entrada, calculada por transformada de Fourier;
- 4. A faixa de frequências entre os valores mínimo e máximo configurados é dividida logaritmicamente conforme o número de **divisões** informado. Uma vez concluído o tempo em regime para a frequência mínima, a frequência do sinal somado é alterada para a próxima divisão da faixa de frequências. Os passos 2 e 3 são repetidos para as demais frequências, até que se chegue à frequência máxima do ensaio.

O ensaio é executado pelo CPX05 com taxa de amostragem de 10 ms. Por isso, não é uma ferramenta adequada para ensaios de alta frequência. Recomenda-se uma frequência máxima de 5 Hz para os ensaios. A taxa atual é suficiente para avaliar o comportamento da malha de controle do regulador e sintonia do Estabilizador de Sistemas de Potência.

Parâmetros

PARÂMETRO	SIGNIFICADO
Ponto de soma	Ponto de soma para o sinal de excitação. Opções:
	Vref – Referência de tensão terminal
	Vpss – Saída do Estabilizador de Sistemas de Potência
	(PSS)
	dw_PSS – Entrada de desvio de frequência do PSS
	Pe_PSS – Entrada de potência ativa do PSS
Sinal de entrada	Sinal de referência para a resposta em frequência. Opções:
	Vref – Referência de tensão terminal
	Efd – Tensão de campo
	Vr – Sinal de controle do RT
	Ifd – Corrente de campo
	Vt – Tensão terminal
Sinal de saída	Sinal de saída da resposta em frequência. Opções:
	Vt – Tensão terminal
	Pe – Potência ativa
	Efd – Tensão de campo
	Ifd – Corrente de campo
	Vr – Sinal de controle do RT
	Vpss – Saída do PSS
	w_calc_PSS – Velocidade calculada do rotor no PSS
	Y_wo_w – Saída do washout de velocidade do PSS
	Y_wo_Pe – Saída do washout de potência ativa do PSS
	U_rtf – Entrada do rastreador de rampa do PSS
	U_pc – Entrada do compensador de fase do PSS
	Y_pc – Saída do compensador de fase do PSS
	Sweep_feedback – Retorno do sinal injetado no MAC01
Amplitude	Amplitude do sinal senoidal de excitação
Faixa de frequências – mín	Frequência mínima do ensaio
Faixa de frequências – máx	Frequência máxima do ensaio
Faixa de frequências – divisões	Número de frequências a serem ensaiadas
Detecção de saturação do sinal de controle - mín	Valor mínimo que sinaliza saturação do sinal de controle do RT
Detecção de saturação do sinal de controle - máx	Valor máximo que sinaliza saturação do sinal de controle do RT
Tempo de estabilização	Tempo de espera, desde o início da aplicação de uma nova
	frequência, em que a resposta em frequência não é calculada
Tempo mín em regime	Duração mínima da janela de cálculo da resposta em frequência
Mín ciclos em regime	Número mínimo de ciclos do sinal senoidal de excitação na
	janela em que a resposta em frequência é calculada

Detecção de saturação do sinal de controle

A resposta em frequência é interpretada como a resposta de um sistema linearizado no ponto de operação escolhido para o ensaio. Se o sinal de controle satura durante o ensaio, está sendo adicionada uma não-linearidade no processo que é indesejada.

Os parâmetros mínimo e máximo de saturação do sinal de controle podem ser utilizados para detectar e indicar essa condição. Se o sinal de controle do RT ficar fora dessa faixa durante o ensaio, aparece uma indicação na janela. O ensaio não é parado ou afetado por essa sinalização.

Condições para o ensaio

O ensaio de resposta em frequência pode ser executado em modo LOCAL nas seguintes condições:

- Controle de tensão terminal: após o processo de excitação ou em carga;
- Controle de corrente de campo: após o processo de excitação ou em carga;
- Controle em malha aberta das pontes. Para realizar o ensaio, habilitar o controle em malha aberta das pontes, excitar a unidade e setar o ângulo de disparo. Ir à janela de sintonia da malha de tensão e corrente e acessar a janela do ensaio de resposta em frequência. O sinal de soma em pu será somado ao sinal de controle do RT em pu, resultante da referência de malha aberta.

O ensaio de resposta em frequência é desabilitado automaticamente nas condições:

- Comutação de canal;
- Comandos de definir, aumentar ou reduzir referência;
- Aplicação de degrau.

Diagrama de Bode

O resultado do cálculo de ganho e fase é apresentado em dois componentes gráficos. No eixo horizontal, a frequência é apresentada em escala logarítmica, em Hz. Nos eixos verticais, são apresentados ganho, em decibéis, e fase, em graus.

Exportar diagrama

O botão 'Exportar dados' salva os pontos do diagrama em formato de texto delimitado por pontoe-vírgula (;), que pode ser aberto em qualquer aplicativo de edição de planilhas.

O botão 'Exportar imagem' salva o diagrama em formato bitmap, que pode ser anexado a relatórios.

Selecionar ponto

Para ver qual o valor de um ponto no diagrama, basta clicar próximo ao ponto desejado (Figura 3). O valor do ponto para que o cursor aponta também é mostrado no canto inferior direito.

Figura 3 - Selecionar ponto no diagrama

Zoom em região do diagrama

Para aproximar numa região do diagrama, selecionar a região desejada da esquerda para a direita (Figura 4).

Figura 4 - Zoom em região do diagrama

Zoom original

Para retornar à visualização sem zoom, selecionar uma região qualquer do diagrama da direita para a esquerda (Figura 5).

Figura 5 - Voltar ao zoom original